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Abstrsct--The lateral inertial migration of a solid spherical particle suspended in a laminar flow over a 
vertical wall is considered theoretically. Formulae for the migration velocity are obtained for both neutrally 
buoyant and non-neutrally buoyant particles and also for the case of zero flow over the wall. Situations in 
which the particle is either free to rotate or prevented from rotating are considered. Such results are found to 
agree qualitatively with known experimental data. 

1. INTRODUCTION 
The lateral migration of neutrally buoyant and non-neutrally buoyant solid spherical particles 
suspended in laminar tube flows has been extensively studied experimentally (Segre & Silberberg 
1961, 1962a, b ; Oliver 1962; Eichhorn & Small 1964; Theodore 1964; Repetti & Leonard 1964; 

Jeffrey & Pearson 1965; Karnis et al. 1966a, b ; Denson et al. 1966; Halow 1968; Yanizesld 1968; 
I-Ialow & Wills 1970a, b; Tachibana 1973), a survey of this work having been presented by 

Brenner (1966). This migration which results from the effects of fluid inertia was studied 
theoretically by Rubinov & Keller (1961) and Saffman (1965). However in these studies the 
effects of the solid bounding walls of the tube and of the variation of the rate of shear across the 

tube were omitted. However Cox & Brenner (1968) derived expressions for the particle migration 
in a general tube flow by making a double expansion of the flow field in terms of the Reynolds 
number and the ratio of particle radius to tube size. These results were not evaluated explicitly 
but were left in the form of volume integrals involving the Green's function for creeping motion 
flow in the tube. In the present paper these results are used to calculate analytically the migration 
velocity of a spherical particle in a flow field near a single vertical plane wall. The situations in 
which the particle is either free to rotate or prevented from rotating, is either neutrally buoyant or 

non-neutrally buoyant, as well as the case where there is no flow over the wall are considered. 

Thus in section 2 a brief description is given of the results obtained by Cox & Brenner (1968) 
together with a discussion of their applicability to the present problem. In sections 3 and 4 the 
Green's function for creeping motion flow near the plane wall is found in a form suitable for the 

calculation of the migration velocity which is done in section 5. Then in the final section the 
results obtained are discussed and compared with the known experimental results. 

2. LATERAL MIGRATION OF A SPHERE 

Consider a viscous fluid with viscosity ~ and density p occupying the semi-infinite region 
r't > 0 and bounded by a solid rigid wall W at r~ = 0. At a distance d from the wall, a small 
sphere of radius a is free to move in the fluid which undergoes a rectilinear flow U'(r') in the r~ 
direction where 

U'(r') = (0, U~(r~), 0), [2.1] 

the characteristic velocity and length scale of this flow being V and d respectively (see figure 1). 
Then in terms of the length scale ratio 
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Figure I. Spherical particle in a fluid flow bounded by a vertical plane wall. 

and the Reynolds number 

Re = aV/v  where v =/~/p, [2.3] 

Cox & Brenner (1968) derived formulae for the migration velocity of the sphere across 
streamlines (i.e. towards or away from the wall) as the result of fluid inertia. This was done by 
making a double expansion in the parameters K and Re both being assumed small. These results 
(which were derived for a more general system than that discussed here) were not explicitly 
evaluated but were left in the form of volume integrals. It is the evaluation of these for the 

present problem which will concern us here. 
Since the undisturbed flow field U' must satisfy the Navier-Stokes equations, 

/zV2U ' -  Vp' = pU' " VU', 

V. U' = 0, [2.4] 

it is seen by substituting from [2.1] that U[(rl) must be a quadratic function of rl so that 

U'(r') = (a* + b*r~ + c*r[Z)e2, [2.51 

e2 being a unit vector along the r[ direction (with el and e3 similarly defined). The no slip boundary 
condition to be satisfied on the wall at rl = 0 then requires the wall velocity U" to be 

U" = a'e2. [2.6] 

We use throughout (unless otherwise stated) dimensionless unprimed variables based upon 
the velocity V, length a and fluid viscosity/z so that the dimensionless velocity U = U'/V and the 

dimensionless position vector r = r'/a. 
A condition that the theory described by Cox & Brenner (1968) apply is that there is either no 

outer inertial expansion or that, when there is an outer inertial expansion it gives rise to no 
contribution to the force on the particle to the order considered (i.e. to order Re+a). It was shown 
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that sufficient conditions for this to occur are 

Re  ¢ K ¢ 1, [2.7] 

and also that 

IUllv~[=0(r -1-~) as r-,oo for a > 0 ,  [2.8] 

where v~ is the disturbance flow produced by the sphere and wall calculated on the basis of the 
creeping motion equations and r = [rl. Since it was shown by Oseen (1927) that v* is O(r-') as r -~ oo 
(see also [4.31]) for the present case, the condition [2.8] reduces to 

IUl=O(r ~-~) as r->oo. 

Thus it would appear that the results could not be applied to the present problem for which 
U = 0(r 2) as r -* oo. However it will now be shown that in the present case the condition [2.8] may 
be relaxed somewhat if one is concerned only with finding the velocity of migration for the sphere 
towards or away from the wall to order Re  +' . 

Taking our axes to be moving in the r2 direction with the sphere so that the motion is steady 
(and neglecting unsteadiness resulting from the small migration velocity) the dimensionless fluid 
velocity v satisfies 

V2v- Vp = R e v .  Vv 

V . v = 0  

v = 0  o n W ,  

[2.9] 

and also the no slip boundary condition on the sphere surface. 

Considering the parameter K fixed and making an expansion in Re, an inner inertial expansion 
is obtained using r as an independent variable. This expansion will be shown to be 

v = ( U + v * ) + R e v * + . . . ,  [2.10] 

where v~ is the creeping motion disturbance velocity produced by the sphere and wall mentioned 
previously and as such cannot give rise to migration of the sphere. Thus v~ is of order r -2 as 
r -..~ oo. 

v* then satisfies 

V~v * - Vp* = (U. Vv~ + v*. VU + v~. VvD, 

V. v* =0, 

v* =0  onW, [2.11] 

and v* = 0 on the sphere r = 1, with boundary conditions at infinity to be obtained by matching onto 
an outer expansion. 
One may write 

v * -  v* + * - ( ,)c.v. ( v , ) v ,  [2.12] 

as the sum of a complementary function and particular integral of [2.11]. 

Thus (v'f)p.~. is any particular solution of [2.11] while (v'0c.F. is a solution of the creeping 
motion equations (which may tend to infinity as r-~ co) with (V*)c.F. = 0 on the wall W and on the 
sphere. 
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From the form of U and v* as r ~oo it is observed that (v*)o.~. possesses terms of order r 1, r °, 

r -t . . . .  as r--,oo. Defining an outer inertial expansion with independent variable ~ such that 

r = R e V 3 r ,  [2.13] 

the terms in v* then match terms of order Re2/3? -2, R e ~  -3 . . . .  in the outer expansion as ~ ~ 0. 

In the outer expansion, one therefore has 

v = U + ReZ/36t + R e i 2  + • • . .  [2.14] 

The equations for fit are 

V2il -- 7101 = c 'r12 ~ i I "F 2c* f~(ti,), e2, 
dl'2 

V ' U l = O ,  

~ = 0 on W, 

and 

it--*0 as F~oo, [2.151 

and for i2 are 

V265 - V,62 = c* ~12 0 fi2 + 2c* ~1(ti2)~ e2 
dr2 

+b*~t O _ +b,(~01e2, 
0-~22 ut  

17. fi2=O, 

fi~ -- 0 on W, 

and 

i ~ O  as ~ o o ,  [2.16] 

all differentiation being taken with respect to the outer ~ variable. The inner boundary conditions 

on fi~ and fi2 are obtained by matching the inner expansion. The form of the part (v*)p.L of v* in the 
inner expansion for large r matches terms of order Re213~ t, R e ~  °, Re ' I3F-I  . . . .  in the outer 

expansion for F ~ 0. Thus i t  must contain at least terms like f-2, ?+, while i2 must contain terms 
like ?--3, ~o for ~ 0 .  No terms like ~ t or F ° can occur in the symptotic form of i t  for ~ 0  since 

otherwise they would match terms proportional to R e  1~3 and R e  2~3 respectively in the inner 

expansion. Such terms cannot occur since they would have to satisfy the creeping flow equations 
with zero velocity on wall W and on sphere and be of order r -I and r ° respectively as r ~ 0% there 
being no non-trivial solutions for these problems. This can be proved for the former problem by 

noting that no work is done on the fluid and for the latter problem by noting that for large r, the 
solution which is homogenous in r ° is a uniform flow which has to be identically zero for zero 
velocity on W. 

Similarly it may be shown that i2 contains no terms like ~-2 or ~- '  in its asymptotic expansion 
for ~ 0 .  Thus i t  contains terms ~(2Ft*l. . .  and fi2 terms like ~t-3Fl°... in their asymptotic 

expansion for f ~ 0 ,  while the form of the inner expansion is indeed that given by [2.10]. 

Consider now the term (v*)c.F. in the inner expansion which satisfies the creeping flow 
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equations with (v*L.F. = 0 on W and on the sphere and whose outer boundary conditions is to be 
determined by matching the outer expansion. 

If v* contains a term like r ~ as r--> oo then this matches a term order Re(3-")/3P" in the outer 
expansion. However, from the form of the outer expansion given in [2.14], it is seen that 

(3 -n )13~213  or n<~l. 

Thus the asymptotic form of (v*Lp contains terms of order r l l r ]° . . ,  and since each term 
satisfies the creeping motion equation, 

[(V*L.F.]~ = A,jrj + B, +O(r-') as r-->oo, [2.17] 

where A~ = 0 from the continuity equation. This velocity (v*)c.F. must be zero on r~ = 0 for all r2 
and r~. This implies 

B i = 0  and A~2=A~3=0 for all i. 

Also since A, = 0 one has A .  = 0. 
Thus as r ~ 

[(V*)c.F.]i = A2,S12r, + A3,r~6i3 + O(r-') 

which represents a plane shear flow. The flow field (v*)c.F. cannot therefore give rise to any force 
on the sphere in the r, direction. Thus in calculating the inertial migration towards or away from 

the wall, one d-~es not need to calculate (v*)c.F. and so the entire calculation for such migration 
may be done without reference to the outer expansion. 

The results derived by Cox & Brenner (1968) may therefore be used without modification for 

an undisturbed flow field given by [2.5] even though the condition [2.8] is not satisfied. This 
calculation was done by expanding the velocity fields v* and v* in the inner inertial expansion (see 
[2.10]) in a power series in x. This required also an inner and an outer expansion, the inner 

expansion using the dimensionless independent variable r while the outer expansion used ~ where 

= Kr = r'ld 

was the position variable made dimensionless with respect to d. It was shown that the particle 

migration resulted from inertia effects in the outer expansion, so that the existence of the wall and 
the precise details of the undisturbed flow even at large distances are important. 

Letting V" be the dimensional velocity with which the sphere would move in the !"2 direction 

in a quiescent unbounded fluid as the result of sedimentation and buoyancy, the results obtained 

by Cox & Brenner (1968) for three different situations may be expressed as follows: 
1. A quiescent or nearly quiescent fluid for which the condition I v'/vl,> 1 is satisfied, the 

dimensional migration velocity u ~ ) ( d )  of the sphere at a distance d from the wall in the r~ 
direction being obtained as 

u ~ ) ( d )  = 6~'a V'2 h. [2.18] 
P 

2. A non-neutrally buoyant sphere for which x 2 < [ V'/V[ < 1, the migration velocity u~2)(d) 
being obtained as 

u~2)(d) = 61raV 'V  
- -  g- [ 2 . 1 9 ]  

V 
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3. A neutrally or almost neutrally buoyant sphere for which iV'IV[ < x  2, the migration 
velocity u~3)(d) being obtained as 

u~3)(d) = ~ *rK2 aV2v (f' + f2) 

4 ,rx2 aV 2 (4I"1 +/2) UM3)( d) = "3 v 

for a sphere free to rotate, and 

[2.20] 

[2.21] 

a'v,, aP, av,= 0, aFka~ a~, o-8,8(~-f'*)=0, ar, 

V , = 0  on ~t=0, 

V,--,0 as Fooo. [2.26] 

Since these equations and boundary conditions for V, are linear, it follows that the creeping 
flow produced by a point force F acting at f'* and satisfying the no slip boundary condition on 

~t = 0 is u(~), where 

u, (f) = V,(L~*)Fj. [2.271 

The dimensionless flow field U2(Yt) from [2.5] and [2.6] is given by 

U~- (Uw)2 = (b*ri + c*r;~)/ V, 

where (Uw)2 is the value of U2 on the wall r~ = 0. If this velocity field attains its maximum value 
at r; = 1 (as shown in figure 1) and if V is chosen to be the value of U[ at rt = l, then 

U2 - (Uw)2 = 2 ~ ,  -/32F12, [2.28] 

where/3 = d/I. 

with 

where ~* is the dimensionless position vector of the sphere [and is thus (1, 0, 0)], and the quantity 
V, (L ~*) is the Green's function for creeping flow in the presence of the wall W and satisfies 

for a sphere prevented from rotating. 
The results given by [2.18] and [2.19] are valid whether or not the sphere is free to rotate. The 

quantities h, g, fl and/'2 were obtained as volume integrals over the region ~1 > 0 (denoted by F) in 

the form 

h = V,I ~2 V,2dL [2.22] 

g fF ([U2(rl) "$ t~ OU2(r) Vi2V21} dr, [2.23] -- - U2(r 1)1 V,,~-~2 V|23f" T 

f { , , -t , ,2 - ~ - ~ a r ,  [2.24] t aP, j , , - ,  Jr [U2(P,)- U2(P*)JV,, ~ V,2+ V2, aU2 art2] . .  

[0U2] ~ { 2 . OU2aV, t'J . v,, + v:, J dr, [2.251 
f" = L ~ ,  J,,-1 J,- [U2(~,)-  "* a 



Thus in [2.22]-[2.25] 

[U2(f , ) -  U2(f*~)] = 2/3(F1- ~*)-/32(~, 2 -  ~,2), [2.29] 

0 U2 = 2/3 - 2/32F,. [2.30] 

3. A POINT FORCE NEAR A PLANE WALL 

In order to evaluate the integrals [2.22]-[2.25] determining the migration velocity, the value of 
the Green's function Vjj(~, ~*) satisfying[2.26] must be obtained. In order to do this consider the 
creeping motion flow u (and pressure p)  produced by a point force of strength F acting at ~* in the 
presence of the plane rigid wall at FI = 0 [see figure 2]. Then 

V2U - Vp = O, 
¢. u = 0, [3.11 

with boundary conditions 

u = 0  on f , = 0 ,  [3.2] 

1 _ ~_~ [ ~  ~ ( , -  , * ) ( , -  ,*) • F ] ,  , ~ , , .  [3.3] 
u I~ -  ~*l' 

Let fi be the velocity and ~0 the pressure of a creeping motion flow produced by a surface 
distribution of forces f(~,) on the ~, = 0 plane, where i ,  = (0, P2, P3) is a vector lying in the surface 
it = 0. Then fi and p are given by 

l f . ,  
fi(i) = ~ + l ~ -  i'l j .  (r,) dF,, 

1 f ~ - i ' ,  d" p ( ~ ) = ~  ~ t, 3.f(~') r,, 
- -  s 

[3.4] 

the integration being taken over the plane il = 0. 
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Figure 2. Point force F acting at position ~* in the neighbourhood of the plane wall ?. = 0. 



208 R. 6. COX and s. K. HSU 

The stress tensor P (with components/s j) for this flow field (fi,/~) is obtained from [3.4] as 

3 f (} - }',)(~- [',)(f - f',) = - ~ l ~ -  f'P f(f') de'. [3.5] 

In the limit rl---~0, the contribution to 

3 f (~ -  F ) (F -  ~',)" f(f',) , , ,  
e i  l = - -  ~ E l  J r -  v,r ur, [3.6] 

from integration in the region outside of a circle of fixed radius • (• ~ 1) centred on L = (0, f2, e3) 
is negligible so that one may replace I(L')  by I(L) in the integrand, yielding 

3 . . . . .  r (~ - f-])(f - f',) /5,1 = ~ r l t t r , ) . j .  ~--L--~,~ dF. [3.7] 

It may readily be shown that 

f ( ~ -  [ ' ) ( [ -  ~'~) . . ,  2zr ~,5 or~ = 3-~[ I, 
- -  s 

where I is the unit tensor. Thus as fl ~ 0  

- I _ 
P , l - - ~ - ~ ( r ~ )  for ~1>0, 

~ + ~ ( L )  for ~ < 0 ,  [3.81 

giving the values of 15 on either side of the plane fl = 0. 
Define a velocity u* and pressure p* as that produced by a point force F acting at the point 

= ~*, the fluid now being considered unbounded. Then near ~ = ~* the velocity u* possesses a 

singularity of the type given by [3.3]. 
The flow field (fi,/~) considered above is chosen as the flow produced by surface forces of 

strength I(f)s acting on e~ = 0, where 

I(L ) = - 2P*l(~s ), [3.9] 

the quantity P*j (~,) being the value of the stress tensor P* of the flow (u*, p*) evaluated at the 

position L on the plane f, = 0. Then by [3.8], it is seen that on the two sides of fl = 0 one has 

/ 5 , 1 ~ P * I ( L )  as e ~ 0  with e , > 0 ,  

~ - P * I ( ~ , )  as ei--,0 with ~,<0.  [3.10] 

Defining a velocity field 6 and pressure ifi as 

fi=fi+u*, 

/~ = p + p , ,  [3.11] 

it follows that (tl,/~) like the flow fields (fi,/~) and (u*,p*) must satisfy the creeping motion 
equations [3.1]. Also since (fi,/i) contains no singularity and (u*, p*) is of the form given by [3.3] 
near ~ = ~* it follows that tl has a singularity of the form [3.3]. 
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If P is the stress tensor corresponding to the flow field (fi,/~) then by [3.10], it is seen that on 
side ~ > 0 of the plane ~ = 0, 

whilst on the side ~1 < O, 

/5,,--->2P*l(~s) as P,-->0, [3.12] 

/~,->0 as f l ~ 0 .  [3.13] 

Consider the volume f, < 0 of fluid undergoing the flow (fi,/;). The work done on this fluid by 
the plane f~ = 0 is - f a,/~, dr2 dr3 integrated over the plane and hence is zero by [3.13]. Also since 
fi and u* (and hence 6) are of order f-I  as f ~ oo it follows that no work is done on the fluid at 
infinity. Hence, no work is done in order to produce the flow (6,/~) in this volume f~ < 0. 
Therefore there can be no viscous dissipation due to (fi, p)  in f, < 0 and so it must represent a 

rigid body motion there. However, since fi = 0 (~-~) as ~ --> oo it follows that i = 0 everywhere in 
the volume f~ < 0. Also since fi and u* (and hence fi) are continuous across the plane f, = 0 it is 
seen that 6 = 0 on ~l = 0. Therefore the flow field (i,/~) satisfies the same equations [3.1], [3.2] and 
[3.3] as the flow field (u, p) in the volume f, t> 0. Since the solution of such equations must be 
unique, it follows that fi is given by 

f i=O for i1<0 ,  
t i = u  for ~ > 0 .  

Thus it is seen that the solution of [3.1], [3.2] and [3.3] for u is represented by the flow field 
produced by a point force F at ~ = F* together with a surface distribution of forces - 2P*~1 (F+) on 
~1 = 0. Such a flow field is then defined not only in the space ?~ t> 0, but also in the space ~ < 0 
where it represents the flow field u = O. 

4. FOURIER TRANSFORM OF FLOWS 

It will be found convenient for the evaluation of the integrals [2.22] to [2.25] to obtain the 
Fourier transform of the flow fields (u*, p*), (fi,/~) and hence (fi,/~). Thus we define F* and II* as 
the three dimensional Fourier transforms of the velocity u* and pressure p* respectively, so that 

F*(K) = f n,(,) exp ( iK.  F) dL 

II*(K) = f p*(F) exp ( iK.  ~) dL [4.1] 

the integrals being taken over the whole of space, u* and p* are then given by the inverse Fourier 
transforms 

1 
f F*(K) exp ( - iK.  ~) dK, u*ff) = 81r-----~ 

p*ff) = ~ J f H*(K)exp ( - i K .  ~)dK, [4.2] 

these integrations being taken over the whole of K space. 
(F, H) and (U, 1~I) are similarly defined as the three dimensional Fourier transforms of (fi, if) and 
(L/~) respectively. 
Since the flow field (fi, p*)  satisfies 

V2u* - Vp* + F S ( i -  f*)  = O, 

~?.u*=O, 

[4.3] 
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u * ~ O  as f-~o% [4.4] 

where 8 ( ~ - f * )  is the three dimensional Dirac delta function, one obtains the equations for 
(F*, II*) by taking the Fourier transform of [4.3] as 

- K2F * + iII*K + F exp ( iK.  ~*) = 0, 

These equations possess the solution 

K" F* =0.  

[4.5a] 

[4.5b] 

K2I - KK 
F*(K) = K 4 • F exp ( iK.  ~*), [4.6a] 

iK .  F 
rl*(K) = ~ exp ( iK.  ~*), [4.6b] 

where K 2 = ]K[ 2 = K, 2 + K2 2 + K3 2. Hence, noting that this solution (F*, H*) would give u* which 

automatically tends to zero as f-~oo, it follows that these expressions [4.6] give the required 
Fourier transform of (u*,p*).  Since the stress tensor P*j is defined as 

,_  Ou* Ou* [4.7] 
P*~ = - p 6,~ +--~rj + M'~ ' 

its Fourier transform H* is 

H* = - II*I + i(F*K + KF*), [4.8] 

which, upon substitution from [4.6], yields 

If* = - iF .  T°)(K) exp ( iK.  ~*), [4.9] 

where T°~(K) is the third rank symmetric tensor, 

TO~ t K 6,jKk + 5u, K~ + ~jkK, - K, KjKk ,k,  ) =  K 2 2 ~-~ . [4.10] 

The inverse transform then gives 

,f P* = -~-~-~3 F.  ' r° ' (K) exp { -  iK.  (~-~*)}dK, [4.111 

so that the force distribution - 2 P *  (L) on the plane fj = 0 may be written as 

- 2 P * ( ~ D -  + - J - / f  - 4Ir 3 F . T ~ 3 ~ ( K ) . e j e x p { - i K . ( ~ s - ~ * ) } d K ,  [4.12] 

where e~ is a unit vector in the ~l-direction (e2 and e3 being similarly defined). 
The flow field (fi,/i) produced by this force distribution satisfies 

~ - ~  + ~ : ( L ) 8 ( ¢ , )  = 0, 

V. fi = 0, [4.13] 
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with 

f i ~ 0  as f-->oo, [4.14] 

where ~i(L)  -- - 2 P * ( L ) .  Proceeding as before, one may obtain equations for Fand  f fas  (see [4.5]) 

- K2F + i f iK + f ~ ( L )  exp (iKs" i , )  dis 0, 

K -  r = O, [4.15] 

where (Ks)i = K28,2 + K38i3 is a vector lying in the plane K1 = 0. Thus the values of F and fl are 
obtained as 

K 2 I -  KK f = K" ~(is)  exp (iK, • i s )d i , ,  

~---~K2. f ~_(L)exp ( iK .  L)dfs .  [4.16] n 

Taking the double Fourier transform (with respect to ~2 and f3) of the expression for .~r(i,) given by 
[4.12], one obtains 

_~(is) exp (iK, • i , )  di,  = F .  T°)(K) • el exp ( iK .  ~*) dK,  

• f = Z exp (iNs • i * ) F .  T°J(N) • e, exp (iK,. ~*) dK, [4.171 
7r 

where i* = (0, f*, f*) is the component of the position vector i* of the particle in the plane ~, = 0. 
The substitution of this expression into [4.16] gives the value of F as 

I~(K) = K2I - KK 
K ~ • B.  F exp (iK~ • ~*), [4.181 

where 

B = ~- T°)(K) • e, exp (iK,~*) dK~. 

This integral can be evaluated and expressed in the form 

B = - [I + K,f*(el  - il~,)(e, - iI~,)] exp ( - K,P*), 

where 

Thus one can write 

K,=x/(K22+K32), 

Ks = K2e2 + K3e3 is a unit vector. 
K, 

K21 - KK 
K 4 .[ I+Ks~*(el- iKs)(e l - iKs)] .Fexp(-KsF*+iK,  .~*). 

[4.19] 

[4.20] 

F(K) = [4.21] 
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The inverse transform gives the velocity of disturbance flow fi(~) produced by the wall f~ = 0 as 

1 f K2KKK [I+K,'*(el-iK,)(e,-iK,)]" F off) = - 8~r--~ 

x exp {-iK. (i - F*) - K,~*} dK. [4.22] 

where 

1 ( I  1 . I 
i - - - ~  k-+ ~ <r-  ~*)(~- ~*) + 2~?f, ~ 

6~*1 f l  
) 

[(f, + ~*~)e, + (L - ~*)] [(~1 + ~*l)e, - (L - f*)]~ ' F, + - F -  
J 

the flow field 

R = ~/ [ ( f ,  + F*) 2 + (~2 -  i~)2 + (~3 + ~)~] 

is the distance from ~ to the image point of ~* in the plane ~ = 0. 
From [3.11], the Fourier transform F of the velocity field u is given by 

I" = F + U*, [4.24] 

where U and F* are given by [4.18] and [4.6a] respectively. Thus 

~, = K2I - KK 
K4 • [Iexp (iKtf*) +B]. Fexp (iK, • ~*) [4.25] 

where B is given by [4.20]. The flow field fi is thus obtained as 

f i ( , , :  ~ f ( K 2 ~ - f l K ) .  [I exp (iK,P*)+ B]. F exp{-K(~-~*),  dK. [4.26] 

Since this flow field is identical to u in the region ft > 0 it is the flow field produced by the point force 
F acting at the position ~* and satisfying the no slip boundary condition (u = 0) on ~, = 0. Thus from 
[2.17], it is seen that the Green's function Vii if, ~*) is given by 

1 f (K21~KK) . [ i e xp ( iK ,P , )+Blexp{_ iK . f f _~ , ) }dK ,  [4.271 
V = 8w---~ 

u(i)  = v ( i ,  i * ) -  F 

being automatically zero in the region P, < 0. 
If Fo(K, F*) is the Fourier transform of the Green's function V, jff, F*) so that 

I 'I F =  Vexp( iK . i )  d~ and V = ~  U e x p ( - i K . ~ ) d K ,  [4.28] 

[4.231 

It may be noted that this integral may be evaluated by first integrating with respect to K1 using 
contour integration and then with respect to the other variables by transforming to polar 
coordinates (by writing K2 = P cos ~, K3 = p sin d') in which case one obtains the disturbance flow 
due to the wall for fl > 0 as given by Oseen (1927), namely 
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then 

F= ( K ~ - Y K )  . [I exp (iK,e*) + B] exp (iK, . L). [4.29] 

The integral in [4.27] may be evaluated in a manner similar to that indicated for [4.22] to obtain 

1 {[ I ff- '*)( '- '*) l  [ I  ( ' - '*)( ' - '*)  
J- R' 

I 6e'e,  ]}  
+ 2e'e, ~-~ + ~ [(e I -F e*)e, + (f, - ~*)1 [(e I + e*)e, - (L - f*)] 

for e~ > O, [4.30a] 

and 

V(~. ~*) = 0 for el < 0, [4.30b] 

so that we have verified that in the region f~ > 0 the Green's function V(L ~*) is expressed the sum 
of two terms, the first representing the flow produced in an unbounded medium by a point force at 

= ~* and the second the disturbance field produced by the plane wall at ej = 0 (see [4.23]). 
Furthermore we have also verified that the Green's function V(L ~*) is identically zero for e! < 0. It 
is also observed from [4.30a] that 

Vff,~*)=0(e -~) as e->oo [4.31] 

where e = Ifl. As mentioned in section 2, this result that the creeping motion flow produced by a 
point force in the neighbourhood of a plane wall dies away like the inverse square of the distance is 
an important requirement for the direct use of the results of Cox & Brenner (1968). 

5. C A L C U L A T I O N  O F  L A T E R A L  M I G R A T I O N  V E L O C I T Y  

In order to evaluate the migration velocity of a sphere given by the [2.19] to [2.21], we must 
calculate the integrals involved in the expressions for f~, f~, g and h given by [2.22]-[2.25]. These 
integrals may be taken over the whole of space (denoted by F) rather than just over the region el > 0 
(denoted by F) if the forms of the Green's function V~ calculated in the previous section are used 
since V~j is identically zero for el < 0. Thus, for example, the quantity h may be written as 

f f  OV,2 h = ~ V. dE [5.11 

Since F0(K, ~*) has been written for the Fourier transform of V,j, it follows that the Fourier 
transforms of the quantities dV~21de2 and V, appearing in [5.1] are - iK2F,~ and F,, respectively. 
Now if F(K) and G(K) are the three dimensional Fourier transforms of [(~) and gff) respectively, 
the Convolution Theorem states that 

fr f(})g(~) = l F( - K)G(K) dK, 
__l 

d~ 
8~- 3 J 

where the integral over K is taken over the whole of the K-space. Thus applying this result to [5.1], 
one obtains 

' I  h = ~ - iK2L2(K)F.(- K) dK. [5.21 
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Substituting [2.29] and [2.30] for the undisturbed flow field into [2.231-[2.251 for f,, f2 and g and 
noting that the Fourier transforms of (0 V,~ / 0f~), f~ V~, f, (0 V,~ / 0f~) and f, ~ (0 V. / 0f~) are respectively 
-iK2F~. -i(d[OKOF,~, -K~(d/OK~)F,~ and +iK~(O:]OK,~)F., the above analysis for h may be 
repeated for the integrals f~,/'2 and g to give 

g =/3(2J, -/3J~), 

f, = 2/3~(1 -/~)(2K, -/3K~), 

[5.31 

[5.4] 

a n d  

A = 2/32( 1 -/3)(2/(, -/3/(~), [5.51 

where 

J ,=  ~ f [ iK2F, ( -K)(1  + i~K,)F,2(K)+ r2,(-K)F,2(K)] dK, 

J2= ~ I [ iK2F"(-K)(1 + o-~,~)F'2(K)-2iF2'(-K)~K~ F'~(K)] dK, 

+. o o + K) dK, g, = 8@ f [iK,r,,(-K'(l '-~-~,) ~-~, 
0 2 O F,2(K) - 2iF2,(- K) ~ F,2(K)] dK, K,=8~ f [iK,L,(-K'(I+oO~K?) O,---~, 

/(I =~-53 f I - K 2 ' F , , ( - K ) ( 1  + iT~K,)r,,(g, + /K2r~, ( - I~)r . (g) ]  dK. 

+ 0-~12) F,,(K)+ 2K2r2,(- K ) ~  F,,(K)] dK, = f [ -  r?r , , ( -  o 

[5.6] 

[5.71 

[5.81 

[5.91 

[5.101 

[5.111 

all the quantities F. and its derivatives appearing in these integrals being evaluated at the particle 
(i.e. at ~* = (1, 0, 0)). In deriving [5.10] and [5.11] from [2.25], use was made of the fact that f2 and f* 
only appear in [4.30] for V~j in the combination f2 - ~* so that (OV, IOf*) = - (OV, IOf2) and hence 
the Fourier transforms of OV, IOf* and O2VJOf20f * are +iK2Fii and + K22F~j respectively. 

From the value of F given by [4.29] and of B given by [4.20] it is seen that 

K 2 6 , -  KiK, . • F,,(K) = K 4 [e 'x''' - e -K'q) - P*(K. + iK,) e-K'ql e 'K" ' : ,  [5.121 

_ _  K 2 8 , , - K , K ,  [ .K:~*~ 
r , , ( K )  = K:8'~K'K2(e'K"~-e-X'q)+ K" I'--~-~ ) 

x (Ks + iKd e -x/T } e ' ~ , ' ' ,  [5.13] 

and 

0 F , z ( K ) f K 2 & 2 - K ,  K2 . . . .  e,K,,; K 2 8 , - K ~ K , ( . K 2 )  
Of* =~ ~ ~m~ +Ks e - X / T ) - t  - K 4 l ~ s  s (Ks +iK,)  

x (1 - K.~*) e - r / r  } e 'K" 'q, [5.141 

which evaluated at ~* = (1, 0, 0) give 

K2&, - K~K, 
F , , ( K )  - K" [e 'K, - (1 + Ks + iK,) e -x, 1, [5.151 
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K28.- KIKI iK2 Ks F"(K)=K28'~  'K'K2(e'~'-e-K')~ K" (K-~',)( + iK') e-~" [5.16] 

and 

0F,~(K) K28,2- K~K2 . 
0e* - K-' 0KI e ' ,  + K,  e- 'q ) K2811K4KiK1/iK2\ K ~--~)( , + i K , ) ( 1 - r , ) e  -~,. [5.17] 

Substituting these values into the integrals [5.2] and [5.6]-[5.11] and evaluating in a manner similar 
to that described for the integral [4.22], one obtains 

1 
h = 64---~ [5.18] 

II 35 
Ji = 384----~ J2 = 256zr [5.19] 

13 37 
K1 - 7681r K2 = 384-----~ [5.20] 

/~ ,=  3 /(.2= 3 
256*r 327r [5.21] 

Thus by [5.3]-[5.5], 

1 
h = 64Ir'  [5.22] 

1 
g = 7-6g-4 (44 - 105/3)/3, [5.23] 

1 
f, = ~ f12(1 -/3)(13 - 37B), [5.24] 

and 

f2 = ~ / 3 2 ( 1  - /3)(1 - 4/3). [5.25] 

Therefore the values of the dimensional migration velocity for the particle for the three cases 
discussed in Section 2 may be expressed as: 

(1) For a quiescent or nearly quiescent fluid for which I V'I VI >> 1 

u J ' =  3 a(V')  2 
32 v [5.26] 

(2) For a non-neutrally buoyant particle for which r2~IV'/V[,~ 1 

u#2~ = 1 a V" V 
128 ~ / 3 ( 4 4 -  105/3). [5.27] 

(3) For a neutrally buoyant particle for which IV'~ V].~ K 2 

5 aV 2 K2/32( 1 _ /3)(22-  73/3) 
u~3'  = + 2 - ~ -  Z - [5.28] 
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for a sphere free to rotate, and 

u,,,~, = 1 a V ~ 
144 v K2/32(1-/3)(61- 184/3) [5.29] 

for a sphere prevented from rotating. 
As shown by Cox & Brenner (1%8), the migration velocity for intermediate cases may be 

obtained by merely adding the corresponding equations for uM. Thus for example the situation for 
which I V ' I  VI is of order unity [so that we have a situation intermediate between cases (1) and (2)] 

gives rise to a migration velocity of u J ' +  u#  2~. 
i.e. For [VH V[ ~ 1 and r ,~ 1 

3 a ( V ' )  2 1 a V ' V / 3 ( 4 4 _  105/3). [5.301 
UM = 3-2 V 128 V 

Similarly the case intermediate between (2) and (3) for which K 2  I v'~l vl ~ 1 gives rise to a 

migration velocity of 

1 ' 5 a V  2 a V® V/3 (44 - 105/3 ) + ~-~ - - ~  K2/32(1 -/3)(22 - 73/3) [5.31] 
uu - 128 v 

for a sphere free to rotate, and 

1 aV'~V 1 a V  2 
128 v o r  o~ _ _ _ _  a ~  a~t ta~ p ~ 4 4 _ l O 5 p J + 1 4 4 v r Z t . , 2 d _  n61_184v , ,  [5.321 UM = 

for a sphere prevented from rotating. 
It is observed that for case (1) the migration velocity u ~ "  (given by [5.26]) is very much larger 

than the expressions u~  2) and u~  3) (given by [5.27] and [5.28]) while similarly for case (2), u~  2) is 
much larger than u~  3) and u~  ') and for case (3), u~  3~ is much larger than u ~ "  and u~  2~. Also for the 

intermediate situation between cases (1) and (2), the migration velocity given by [5.30] is much 
larger than u~  3~, while similarly the intermediate situation between cases (2) and (3) gives rise to a 
migration velocity given by [5.30] (or [5.31]) which is much larger than u ~ ' .  Thus the migration 

velocity applicable to all cases (including intermediate cases) may be written as 

uM = u J "  + u J  2~ + u J  ~, [5.331 

so that 

' 5 a V  2 
3 a ( V ' )  ~ 1 a V = V / 3 ( 4 4 _  105/3)+2-~--v--- K2/3~(1-/3)(22-73/3) [5.34] 

uM - 32 v 128 v 

for a sphere free to rotate, and 

1 a V  2 K2/3~(1 -/3)(61 - 184/3) [5.351 3 a ( V ' )  2 1 a V ' V ~ ( 4 4  _105/3)+~_~ v 
uM = 32 v 128 v 

for a sphere prevented from rotating. 
Furthermore the migration velocity given by [5.30] may thus be taken as being applicable to 

cases (1) and (2) as well as to the intermediate situation [case (1-2)] between (1) and (2). Also 
likewise the migration velocities given by [5.31 ] and [5.32] may be taken as being applicable to cases 
(2) and (3) as well as to the intermediate situation [cases (2-3)] between (2) and (3). 
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6. R E S U L T S  A N D  D I S C U S S I O N  

It is seen that the migration velocity given by [5.34] and [5.35] for a sedimenting spherical 

particle in the flow over the wall may be written in the non-dimensional form 

sgn X + ~ IxIK/3 (1 - /3) (22-  73/3) [6.11 

for a sphere free to rotate, and 

1 l u/~= Ixl-'-]-~-~ /3(44-105/3)sgn x +-i--ffl lxlK2/32(1-/3)(61-184/3) [6.2] 

for a sphere prevented from rotating where u/~is the dimensionless migration velocity defined as 

and x is the ratio V/V" of the flow velocity V at r] = 1 to the sedimentation velocity V" taken as 
being positive in the r~-direction. Thus the dimensionless velocity only depends on the quantities X, 
r (the ratio aid of particle radius a to the particle to wall distance d) and /3 equals to d/! 
determining the particle position in relation to the flow. 

For the conditions under which [5.30] is valid, namely for cases (1), (1-2) and (2) [i.e. for 

[xl-' "> K2], the dimensionless velocity u~ may be written as 

, 3 _~ I 
u ~ = ~  X -l-~-8/3(44-105/3)sgnx [6.4] 

and is thus a function only of ) and/3. This result has been plotted in figure 3 in which lines of 
constant u ~ have been drawn on a 06/3 ) diagram. Regions for which u ~ is negative represent 
particle migration towards the wall while u ~ positive represents migration away from the wall. 
Points on the line u ~ = 0 represents equilibrium positions of the particle for which there is no 
migration velocity. These are stable for (ouhtO/3) < 0 and unstable for (~u/ff~/3) > 0. It is observed 

from figure 3 that: 
(i) For case (1), X = 0, the migration of the particle is always away from the wall and has a 

magnitude which is independent of its position (see [5.26]) although it must be remembered 
that the value of d, the distance of the sphere from the wall, cannot be made indefinitely 
large without invalidating the condition [2.7]. 

(ii) For case (2) with a particle less dense than the fluid in an upflow (or more dense than the 
fluid in a downflow) so that X = + oo, it is seen that ([5.27]) particle migration is towards the 
wall for the particle near the wall with /3 < (44/105) (=  0.419). This agrees with the 
experimental results of Repetti & Leonard (1964) for two dimensional Poiseuille flow. 
However the result that for/3 > 0.419 migration should be away from the wall does not 
agree with the above experiments presumably because at these larger values of/3, the 
influence of the different wall configuration in the experiments is being felt. 

(iii) For case (2) with a particle less dense than the fluid in a downflow (or more dense than the 
fluid in an upflow) so that X = - 0% it is seen that ([5.27]) the migration is just the opposite to 
that described above in (ii) so that the direction of migration is away from the wall (and is in 
agreement with experiment) for 13 < 0.419 but is in disagreement with experiment for 
/3 > 0.419, presumably due to the effects of other walls present. 

(iv) For a particle less dense than the fluid in an upflow (or more dense than the fluid in a 
downflow), the migration is always away from the wall for X < 2.6 (see figure 3), but there 

MF Vol. 3, No. 3--B 



218 R.G. COX a nd  S. K. SSU 

/~  2.0 

/ 

- 0 . 5  

i 
I 

. / / ,  

. . . . . . . . .  - - 6 ~ - 5  . . . . . . . . . . . . . .  _ . . . . . .  :~; 

. . . . . . . . . . . .  _"-_-0". ~ ,~ _- .- 2 - - - 2  - -- - -- "-'- ~- - - ~ ' ~ , ' , ;  

0.025 . . . . . . . . . . . . . . .  " I "  ,,~ 

1.5 

.0 .5 
I .U  - -  . . . . .  - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i / 

÷0.01  

i . .  . . . . . . . . . . . . . . . . . . . .  . o - g ;  . . . . . . . . . .  , 0. 5 / ,  . . . . . . . . . . .  ----_ -_--'_;_'~.02~---_'- -------" 
i . - - .  . . . . . . . .  o o _ _ _ _ _ ~  " 

i i i ~ -  . . . . . . .  

• ~1 " ' ~=  i I I i i 

-12 - f0 - 8  -6  - 4  -2 0 ,-2 .4  *6  . 8  *10 .12 

X 

Figure 3. Lines of constant u~ drawn on (X,/3) diagram for the situation Ix[ -~ ~, ~= [i.e. for cases (1), (1-2) and (2)]. 
The line representing equilibrium positions of particle (u ~ = O) is indicated thus - -  

exist two equilibrium positions for X > 2.6. Of these, the equilibrium position closer to the 
wall (with/3 = 0.21 at X = 2.6 decreasing with/3 --)0 as X --) oo) is stable while the outer 
equilibrium position (with /3 = 0.21 at X = 2.6 increasing with /3 ~0.419 as :(-->oo) is 
unstable. While it is unlikely that at large values of h: that these equilibrium positions would 
be observable (since the inner equilibrium position would then be so close to the wall that 
its distance from the wall could not be made much larger than a and the outer equilibrium 
position would not exist due to effect of other walls), it might be possible to observe such 
equilibrium positions at values of h: slightly larger than 2.6. 

(v) For a particle less dense than the fluid in a downflow (or more dense than the fluid in an 
upflow), the migration is towards a stable equilibrium position which is at/3 = oo for ~: = 0 
and decreases with/3 --> 0.419 as X -* - ~. As noted in (iii) above, the inward migration 
towards the wall at the larger values of/3 is unlikely to be observed in practice. 

(vi) The equilibrium positions (whether stable or unstable) depend only on the value of 
X = V/V'= and are therefore not dependent directly on the particle radius a, 
although of course in general a change in particle size will cause a change in the value of X- 

For the conditions under which [5.31] and [5.32] are valid, namely for cases (2), (2-3) and (3) [i.e. 
for [XI-' "~ 11, the dimensionless velocity u~ may be written as 

1 5 
u~=  - 1 - ~  B (44-  105/3) sgn $ +2-~ I$l '(1 /3)(22- 73/3) [6.5] 

for a sphere free to rotate and 

u h =  1~/3(44 105/3) sgn ~b + 14/1'(1/3)(61184/3) [6.61 

for a sphere prevented from rotating, where ~/is defined as 
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V" I s 
¢=X-'K-~/3-~= V a s" [6.7] 

Thus u ~ is a function only of this quantity $ and of/3. These results [6.5] and [6.6] have been 
plotted respectively in figures 4a and 4b in which lines of constant u~hav¢ been drawn on a (~b,/3) 
diagram. Again the equilibrium positions of the particle are indicated by the line uG = 0, while the 
stability of such positions are determined by the sign of 0u G/0/3. It is observed from figures 4a and 
4b that: 

(i) For a neutrally buoyant particle (~b = 0) the migration is away from the wall at small 
distances from the wall (0 </3 < (22/73) for particles free to rotate and 0 </3 < (61/184) for 
particles prevented from rotating) and also at positions beyond the point of maximum flow 
velocity (1 </3). In the intermediate positions ((22173) </3 < 1 for particles free to rotate 
and (611184) </3 < 1 for particles prevented from rotating) the migration is towards the 
wall. Thus there is a position of stable equilibrium at/3 = (22173) = 0.3014 for particles free 
to rotate and at/3 = (61/184) = 0.3315 for particles prevented from rotating while in either 
case there is a position of unstable equilibrium at the position/3 = 1 of maximum flow 
velocity. These results agree qualitatively with experiments performed with neutrally 
buoyant particles in flow between plane parallel walls (Repetti & Leonard 1%4; Yanizeski 
1%8; Tachibana 1973) and in tube flow (Segre & Silberberg 1%1, 1%2a, b; Oliver 1%2, 
Karnis et al. 1%6a, b; Jeffrey & Pearson 1965) in that the experiments show a position of 
stable equilibrium between the wall and the position of maximum velocity (at about 
/3 = 0.4-0.5) and a position of unstable equilibrium at the position of maximum flow 
velocity (/3 = 1). Furthermore it was observed by Oliver (1%2) that in tube flows a particle 
which is prevented from rotating migrates to a position farther from the wall than that for a 
particle free to rotate, a result also in qualitative agreement with the present theory. 

(ii) For a particle less dense than the fluid in an upflow (or more dense than the fluid in a 
downflow) the stable equilibrium position which for a neutrally buoyant particle free to 
rotate is at/3 = 0.3014 [or/3 = 0.3315 for a particle prevented from rotating] moves towards 
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Figure 4a. Lines of constant u ~ drawn on (~,/~ ) diagram for a sphere free to rotate under the situation ix i- '  < ! [i.e. for 
cases (2), (2-3) and (3)]. The line representing equilibrium positions of particle (u G = 0) is indicated thus 
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Figure 4b. Same as figure 4a except that sphere is prevented from rotating. 

the wall as gJ increases with its position /3 ~ 0  as $--} oo. This result that the stable 
equilibrium position depends on the density difference between solid and fluid for near 
neutrally buoyant particles has been observed experimentally by Repetti & Leonard (1964) 

and Tachibana (1973). The unstable equilibrium position at/3 = 1 for a neutrally buoyant 

particle is observed from figures 4a, b to move towards the wall as # increases with 
/3--}0.419 as $ ~ whether or not the particle is allowed to rotate. 

(iii) For a particle less dense than the fluid in a downflow (or more dense than the fluid in an 
upflow) the position of stable equilibrium a t /3  = 0.3014 [or/3 = 0.3315 for a particle 
prevented from rotating] moves away from the wall as $ becomes more negative with 
/3 -~ 0.419 as $ --+ - oo (see Repetti & Leonard 1964). The unstable equilibrium position at 

/3 = 1 for a neutrally buoyant particle also moves away from the wall as $ becomes more 
negative with/3 --} +oo as $--} -oo. However this latter result can hardly be expected to be 

valid for tube flow or flow between parallel plates due to the expected large effect of the 

wall geometry. 
(iv) In the limit of ~ ~ +- 0% the results given in figures 4a and b become identical with those for 

X ~ -+ oo shown in figure 3, each then representing case (2). 

(v) The equilibrium positions whether stable or unstable depend only on the value of 
¢J = ( V ' I  V)(12/a 2) and since for a uniform particle 

V L = 2(Ap)ga 2 
9~ ' 

where Ap is density of the particle minus that of the fluid, it follows that 

~b = 2(Ap)gl 2 
9/xV ' 

so that the equilibrium positions of the particle are seen to depend on Ap but to be 
independent of the particle size a. 
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The results and theory which have been described in this paper provide a means by which the 
lateral inertial migration of a spherical particle in a flow near a planar (or nearly planar) solid wall 
may be calculated whether or not there exists a pressure gradient in the undisturbed flow. In general 
the results can be expected to be valid when fl is small, but for the particle far from the wall (fl 
large), the results would only be valid for an experimental situation where the flow is that given by 

[2.28] over a region [r'[ < Ad where A ~ 1. 
The lateral migration of a particle in rectilinear flow between a pair of vertical parallel walls has 

been investigated theoretically by Ho & Leal (1974) for the case of a neutrally buoyant particle 
[case (3)] and by Vasseur (1973) for all the other situations discussed in this paper. These results are 
shown by Vasseur & Cox (1976) to be in very good agreement with the present results when fl is 
small. 
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